Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance.

نویسندگان

  • Ayyoob Jafari
  • Farshad Almasganj
  • Maryam Nabi Bidhendi
چکیده

This paper introduces a combinational feature extraction approach to improve speech recognition systems. The main idea is to simultaneously benefit from some features obtained from Poincaré section applied to speech reconstructed phase space (RPS) and typical Mel frequency cepstral coefficients (MFCCs) which have a proved role in speech recognition field. With an appropriate dimension, the reconstructed phase space of speech signal is assured to be topologically equivalent to the dynamics of the speech production system, and could therefore include information that may be absent in linear analysis approaches. Moreover, complicated systems such as speech production system can present cyclic and oscillatory patterns and Poincaré sections could be used as an effective tool in analysis of such trajectories. In this research, a statistical modeling approach based on Gaussian mixture models (GMMs) is applied to Poincaré sections of speech RPS. A final pruned feature set is obtained by applying an efficient feature selection approach to the combination of the parameters of the GMM model and MFCC-based features. A hidden Markov model-based speech recognition system and TIMIT speech database are used to evaluate the performance of the proposed feature set by conducting isolated and continuous speech recognition experiments. By the proposed feature set, 5.7% absolute isolated phoneme recognition improvement is obtained against only MFCC-based features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Variation Analysis of Formant and Pitch Frequencies in Anger and Happiness Emotional Sentences in Farsi Language

Setup of an emotion recognition or emotional speech recognition system is directly related to how emotion changes the speech features. In this research, the influence of emotion on the anger and happiness was evaluated and the results were compared with the neutral speech. So the pitch frequency and the first three formant frequencies were used. The experimental results showed that there are lo...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

بهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگی‌های استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز

The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chaos

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2010